APEC Math Review Part 2 Sets

Ling Yao

August, 2020

UNIVERSITY OF MINNESOTA

Vocabulary

• Set

- $A = \{US, Columnbia, Malawi, China\},\$
- $\mathbb{R}_+ \equiv \{x | x \geq 0\}$
- *I* Integers
- Element
	- *US* ∈ *A*
	- $0 \in \mathbb{R}_+$, $0 \notin \mathbb{R}_{++}$
- Subset
	- $A \subset U = \{$ all countries in the world $\}$
	- $\mathbb{R}_+ \subset \mathbb{R}$
- Empty set
	- $\emptyset = \{ plant with black flowers\}$
- Complement: *A c*
- Set difference: *A**B*
- Intersection: *A* ∩ *B*
- Union: *A* ∪ *B*

Figure A1.1. Venn diagrams.

Source: Jehle & Reny (2011)

Set product - a set of ordered pairs

$$
S \times T \equiv \{ (s, t) | s \in S, t \in T \}
$$

N-dimensional Euclidean space

$$
\mathbb{R}^n \equiv \mathbb{R} \times \mathbb{R} \times ... \times \mathbb{R} \equiv \{ (x_1, ..., x_n) | x_i \in \mathbb{R}, \forall i = 1, ..., n \}
$$

Cartesian Plane

$$
\mathbb{R}^2\equiv\mathbb{R}\times\mathbb{R}\equiv\{(x_1,x_2)|x_1\in\mathbb{R},\,x_2\in\mathbb{R}\}
$$

Probability simplex

 $\{(p_1, p_2, p_3)| p_i \in [0, 1]$ for $i = 1, 2, 3; p_1 + p_2 + p_3 = 1\}$

Source: Glewwe APEC 8001 lecture notes

Convex set

 $S \subset \mathbb{R}^n$ is a convex set of for all $\mathbf{x}^1 \in S$ and $\mathbf{x}^2 \in S$, we have $t\mathbf{x}^1 + (1-t)\mathbf{x}^2 \in S$

for all *t* in the interval $0 \le t \le 1$.

Source: Jehle & Reny (2011)

Question: Are these sets convex?

- ∅
- $\bullet \mathbb{R}$
- *S* ∪ *T* (*S* and *T* are convex)
- *S* ∩ *T* (*S* and *T* are convex)
- inputs combinations sufficient for producing a certain quantity of output

Input requirement set

• The open ε -ball with center \mathbf{x}^0 and radius $\varepsilon > 0$ is a subset of points in \mathbb{R}^n :

$$
\mathit{B}_{\varepsilon}(\mathbf{x}^0) \equiv \{ \mathbf{x} \in \mathbb{R}^n | \ d(\mathbf{x}^0, \mathbf{x}) < \varepsilon \}
$$

• The closed ε -ball:

$$
\mathit{B}_{\varepsilon}(\mathbf{x}^0) \equiv \{ \mathbf{x} \in \mathbb{R}^n | \ d(\mathbf{x}^0, \mathbf{x}) \leq \varepsilon \}
$$

Open and closed set

Figure A1.10. Balls in $\mathbb R$ and $\mathbb R^2$.

Source: Jehle & Reny (2011)

- *S* ⊂ R *n* is an **open set** if for all **x** ∈ *S*, there exists some $\varepsilon > 0$ such that $B_{\varepsilon}(\mathbf{x}) \subset S$.
- *S* is a **closed set** if its complement *S c* is an open set.

Question: Are these sets open or closed?

- ∅
- $\bullet \mathbb{R}^n$
- the union of open sets
- the intersection of any finite number of open sets
- the union of any finite number of closed sets
- the intersection of closed set
- the intersection of a closed set and an open set

Bounded set

A set $S \subset \mathbb{R}^n$ is **bounded** if it is entirely contained with some ε -ball (either open or closed).

A set $S \subset \mathbb{R}^n$ is **compact** if it is both closed and bounded.

Given $\mathbf{p} \in \mathbb{R}^n$ with $p \neq 0$ and $c \in \mathbb{R}$, the **hyperplane** generated is the set $H_{\mathbf{p},c} = \{z \in \mathbb{R}^n | \mathbf{p} \cdot \mathbf{z} = c\}$

Separating hyperplane theorem

Suppose the $B \subset \mathbb{R}^n$ is a convex and closed set and that $\mathbf{x} \notin B$. Then there is $\mathbf{p} \in \mathbb{R}^n$ and a value $c \in \mathbb{R}$ such that $\mathbf{p} \cdot \mathbf{x} > c$ and **p** · **v** \lt *c* for every **y** \in *B*

It is used to prove the Second Welfare theorem, which implies for any initial endowment distribution, there is a price set that supports a redistribution of endowments toward a Pareto optimal in an exchange economy.

Separating hyperplane theorem

Proof:

1 We can find a point **y** ∈ *B* that is closest to the $\mathbf{x} \notin B$.

Q Denote
$$
\mathbf{p} = \mathbf{x} - \mathbf{y}
$$
 and $c' = \mathbf{p} * \mathbf{y}$.

$$
\text{Q p} x - c' = px - py = (x - y)^2 > 0.
$$

4 For any **z** ∈ *B*,

 $\mathbf{p} * (\mathbf{z} - \mathbf{y}) = \mathbf{p} \mathbf{z} - c' \leq 0$ because vector **p** and **z** − **y** cannot make an acute angle.

5 $\mathsf{px} > c'$ and $\mathsf{pz} \leq c' \implies \exists \varepsilon \to 0$ such that $\mathbf{p} * \mathbf{x} > c$ and $\mathbf{p} * \mathbf{y} < c$ for $c = c' + \varepsilon$.