APEC Math Review Part 2 Sets

Ling Yao

August, 2020

UNIVERSITY OF MINNESOTA

Vocabulary

Set

- $A = \{US, Columbia, Malawi, China\},\$
- $\mathbb{R}_+ \equiv \{x | x \ge 0\}$
- I Integers
- Element
 - *US* ∈ *A*
 - $\mathbf{0} \in \mathbb{R}_+$, $\mathbf{0} \notin \mathbb{R}_{++}$
- Subset
 - $A \subset U = \{ all countries in the world \}$
 - $\mathbb{R}_+ \subset \mathbb{R}$
- Empty set
 - $\emptyset = \{ plant with black flowers \}$

- Complement: A^c
- Set difference: *A\B*
- Intersection: $A \cap B$
- Union: *A* ∪ *B*

Figure A1.1. Venn diagrams.

Source: Jehle & Reny (2011)

Set product - a set of ordered pairs

$$m{S} imes m{T} \equiv \{(m{s},t) | m{s} \in m{S}, \ t \in m{T}\}$$

N-dimensional Euclidean space

$$\mathbb{R}^n \equiv \mathbb{R} \times \mathbb{R} \times ... \times \mathbb{R} \equiv \{(x_1, ..., x_n) | x_i \in \mathbb{R}, \forall i = 1, ..., n\}$$

Cartesian Plane

$$\mathbb{R}^2 \equiv \mathbb{R} \times \mathbb{R} \equiv \{(x_1, x_2) | x_1 \in \mathbb{R}, x_2 \in \mathbb{R}\}$$

Probability simplex

 $\{(p_1, p_2, p_3) | p_i \in [0, 1] \text{ for } i = 1, 2, 3; p_1 + p_2 + p_3 = 1\}$

Source: Glewwe APEC 8001 lecture notes

Convex set

 $S \subset \mathbb{R}^n$ is a convex set of for all $\mathbf{x}^1 \in S$ and $\mathbf{x}^2 \in S$, we have $t\mathbf{x}^1 + (1-t)\mathbf{x}^2 \in S$

for all *t* in the interval $0 \le t \le 1$.

Source: Jehle & Reny (2011)

Question: Are these sets convex?

- Ø
- \mathbb{R}
- $S \cup T$ (S and T are convex)
- $S \cap T$ (*S* and *T* are convex)
- inputs combinations sufficient for producing a certain quantity of output

Input requirement set

The open ε-ball with center x⁰ and radius ε > 0 is a subset of points in ℝⁿ:

$$oldsymbol{B}_arepsilon(\mathbf{x}^0)\equiv\{\mathbf{x}\in\mathbb{R}^n|\,oldsymbol{d}(\mathbf{x}^0,\mathbf{x})$$

• The closed ε -ball:

$${\it B}_arepsilon({f x}^0)\equiv\{{f x}\in{\mathbb R}^n|\, d({f x}^0,{f x})\leqarepsilon\}$$

Open and closed set

Figure A1.10. Balls in \mathbb{R} and \mathbb{R}^2 .

Source: Jehle & Reny (2011)

- S ⊂ ℝⁿ is an **open set** if for all **x** ∈ S, there exists some ε > 0 such that B_ε(**x**) ⊂ S.
- *S* is a **closed set** if its complement *S*^{*c*} is an open set.

Question: Are these sets open or closed?

- Ø
- **R**ⁿ
- the union of open sets
- the intersection of any finite number of open sets
- the union of any finite number of closed sets
- the intersection of closed set
- the intersection of a closed set and an open set

Bounded set

A set $S \subset \mathbb{R}^n$ is **bounded** if it is entirely contained with some ε -ball (either open or closed).

A set $S \subset \mathbb{R}^n$ is **compact** if it is both closed and bounded.

Given $\mathbf{p} \in \mathbb{R}^n$ with $p \neq 0$ and $c \in \mathbb{R}$, the hyperplane generated is the set $H_{\mathbf{p},c} = \{z \in \mathbb{R}^n | \mathbf{p} \cdot \mathbf{z} = c\}$

Separating hyperplane theorem

Suppose the $B \subset \mathbb{R}^n$ is a convex and closed set and that $\mathbf{x} \notin B$. Then there is $\mathbf{p} \in \mathbb{R}^n$ and a value $c \in \mathbb{R}$ such that $\mathbf{p} \cdot \mathbf{x} > c$ and $\mathbf{p} \cdot \mathbf{y} < c$ for every $\mathbf{y} \in B$

It is used to prove the Second Welfare theorem, which implies for any initial endowment distribution, there is a price set that supports a redistribution of endowments toward a Pareto optimal in an exchange economy.

Separating hyperplane theorem

Proof:

1 We can find a point $\mathbf{y} \in B$ that is closest to the $\mathbf{x} \notin B$.

2 Denote
$$\mathbf{p} = \mathbf{x} - \mathbf{y}$$
 and $c' = \mathbf{p} * \mathbf{y}$.

3
$$\mathbf{px} - \mathbf{c}' = \mathbf{px} - \mathbf{py} = (\mathbf{x} - \mathbf{y})^2 > 0.$$

4 For any $\mathbf{z} \in \mathbf{B}$,

 $\mathbf{p} * (\mathbf{z} - \mathbf{y}) = \mathbf{p}\mathbf{z} - \mathbf{c}' \le 0$ because vector \mathbf{p} and $\mathbf{z} - \mathbf{y}$ cannot make an acute angle.

5 $\mathbf{px} > \mathbf{c}'$ and $\mathbf{pz} \le \mathbf{c}' \implies \exists \varepsilon \to 0$ such that $\mathbf{p} * \mathbf{x} > \mathbf{c}$ and $\mathbf{p} * \mathbf{y} < \mathbf{c}$ for $\mathbf{c} = \mathbf{c}' + \varepsilon$.